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ABSTRACT 

In ubiquitous computing, both the context of use and the users’ 

needs may change dynamically with users’ mobility and with the 

availability of interaction resources. In such changing 

environment, an interactive system must be dynamically 

composable according to the user need and to the current context 

of use. This article elicits the degrees of freedom User Interfaces 

(UI) composition faces to, and investigates automated planning to 

compose UIs without relying on a predefined task model. The 

composition process considers a set of ergonomic criterions, the 

current context of use, and the user need as inputs of a planning 

problem. The user need is specified by the end-user (e.g., get 

medical assistance). The system composes a UI in turn by 

assembling fragments of models along a planning process. 

Categories and Subject Descriptors 

H.5.2 [User Interfaces]: Ergonomics, Graphical user interfaces 

(GUI), Prototyping, User-centered design. D2.2 [Software 

Engineering]: Design Tools and Techniques, User-Interfaces. 

General Terms 

Design, Human factors, Algorithms. 

Keywords 

User Interfaces composition, Semantic models, Automated task 

planning, Context of use. 

1. INTRODUCTION 
Pushed forward by new information technologies, Weiser’s vision 

of ubiquitous computing comes to reality [11]. His definition of 

ambient computing implies 1) a global knowledge of an 

information system context, and 2) adaptation processes to 

comply with a given context of use. The context of use is usually 

defined as a <user, platform, environment> triplet. Unpredictable 

contexts of use might affect users’ interactive behaviors and task 

organization. Therefore, each User Interface (UI) design option 

from the task model to the final UI is highly contextual and might 

be decided at runtime. Therefore, most of the ubiquitous design 

frameworks consider variations of the context of use as inputs to 

select UI options (i.e., plastic design [9], automatic generation [6], 

mashups [1]). However, to the best of our knowledge, the user 

task variation is usually left out. 

This article outlines an approach, based on automated planning, to 

support task as well as UI variations in an integrated framework 

for UI composition. In the following, section 2 exemplifies multi-

level UI composition on a medical support case study. Section 3 

elicits the degrees of freedom UI composition faces to. Section 4 

introduces automated planning and highlights the  UI composition 

process. Section 5 presents an integrative framework for UI 

composition by planning. The focus is set on the composition of 

models (Model-based composer) and code (Code composer). 

Section 6 summarizes our contributions and draws some 

perspectives. 

2. RUNNING CASE STUDY 
Victor is a New-York citizen on vacation in Philadelphia. After 

spending his day tasting the rich local food, Victor feels bloated at 

night and needs to find the doctor on duty. Using his PDA, he 

specifies his need in general terms: “I would like to get medical 

support”. 

According to Victor’s need and to the available interaction 

resources and existing information, the system abstracts the goal, 

plans a task model, and composes one possible UI. The 

composition process is not fully autonomous: it requires 

additional information from Victor. The negotiation UIs (Figure 

1) are composed by the system as well. 

Given Victor’s current location, the system asks Victor whether 

he prefers to return home or to find assistance in Philadelphia 

(Figure 1a). Victor chooses to consult a local doctor. The system 

therefore finds and provides him with possible local contact 

information: the nearest hospital or doctor on duty, a medical hot-

line, or the firemen (Figure 1b).   

(a) Possible locations. 
(b) Possible options. 

 

 
Fig. 1. Automatically composed UI.  

Victor selects the doctor on duty. The systems provides him with 

contact and location information. The UI layout matches the 

current user platform: 

Smartphone. If Victor prefers to keep information at hand, a UI 

is generated for his Smartphone. With respect to the limited 

screen resolution, pieces of information are tabbed and no 

additional data is provided (Figure 2). 
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Fig. 2. The generated UIs for a Smartphone. 

Desktop Wall. If a desktop wall is available, the system generates 

a single pane UI allowing to contact and/or to get route 

information to the doctor’s office. Additional information about 

close services, like the nearest all-night chemist, is also provided 

(Figure 3). 

 Fig. 3.  The UI generated for a desktop wall display.  

3. MODELS ARE KEY 
This section goes back to model based design in Human 

Computer Interaction (HCI), and claims for keeping these models 

at runtime so that to support dynamic adaptation. 

3.1 Model based design 
UIs are modeled along several levels of abstraction. For example, 

the CAMELEON reference framework identifies four main levels 

of design decisions [2]. The task model (TM) describes how a 

given user task can be carried out; the abstract UI (AUI) 

delineates task-grouping structures (i.e., workspaces); the 

concrete UI (CUI) selects and layouts the interaction elements 

(i.e., interactors) into the workspaces; at last, the final UI (FUI) is 

about the code. Mappings relate these models to each other. For 

example, a task should be mapped to one workspace of the AUI at 

least. 

In a dynamic context of use, any of these UI design decisions and 

their subsequent models and mappings might be updated at 

runtime to match the current context of use. As long as these 

adaptations satisfy the usability and utility properties, the UI is 

said to be plastic [9]. In Victor's case study, every design decision 

might be adapted in a plastic way. For example, the task “Find 

nearest chemist” may be removed from the task model. The AUI 

model associated to the Smartphone favors the “Call the office” 

subtask whilst the desktop wall version gives a simultaneous 

access to the two subtasks (“Call the office” and “Find route 

information”). Variations at the CUI level are not exemplified in 

the case study. We could imagine a switch from a route display to 

a list of directions so that to fit with the Smartphone display. Such 

adaptations might be seen as a transformation between two graphs 

of models. 

3.2 Graph of models to support adaptation 
Earlier work defined principles for UI plasticity [8]. The authors 

structured the CAMELEON reference framework as a network of 

models and mappings (Figure 4), and claimed for keeping this 

graph alive at runtime so that to support adaptation.  

 

Fig. 4. Semantic graph of models of an interactive system [8]. 

The graph expresses and maintains multiple perspectives on a 

system. For example, a UI may include a task model, a concept 

model, an AUI model and a CUI model linked by mappings. In 

turn, the UI components are mapped onto items of the Functional 

Core, whereas the CUI interactors are mapped onto the input and 

output (I/O) devices of the platform. Although such a model 

provides a helpful organizational view on the elements and 

relationships involved when designing a plastic interactive 

software, the proposed mappings between the context of use and 

the other components hardly describe contextual choices inside  

each model (TM, CUI, AUI, etc.). 

Demeure et.al. provide a complementary semantic graph of 

models to control UI plasticity within each design option level [4]. 

Their model allows UI designers to check out replaceable (i.e. 

functionally equivalent) units at run-time. For example, a given 

layout of interactors at the CUI level might be switched to another 

one depending on the desired ergonomic properties [7]. We 

propose to replace these hand-made choices by predicates 

dependent of the context of use, and manipulated by the system. 

Figure 5 illustrates the design process along the models and 

mappings proposed in [8] and the replaceable options described in 

[4]. For example, at the task level (TM), two options exist for T2 

depending on the context of use (Figure 5 b&c). 

In Figure 5, within a level of abstraction, units relate to each other 

according to a consumer-provider relationship (Figure 5: pc  

link). For example, at the TM level, one of the options for the task 

T2 relies on the occurrence of a provider leaf option1 for the task 

T3 (Figure 5a). Therefore, as T2 “consumes” T3, this option will 

be triggered if and only if T3 is satisfied. Depending on the 

current context of use, consumer-provider links behave like 

                                                                 

2A leaf option has no relationship for neither providing nor 

reifying options. 
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“opened” or “closed” transistors. In a given pc  relationship, 

the status of a transistor depends on the contextual requirements 

of the provider (p). For example, at the TM level in Figure 5, one 

of the task T2 options is possible only for experienced users 

(Figure 5d). 

         

Fig. 5. Example of a TM options graph. 

In UI design, mappings link together options of different levels of 

abstraction. For example, interactors from the CUI level are 

usually mapped onto workspaces of the AUI level. These 

mappings, presented in Figure 4, or the definitional links in [4] 

constitute abstracting-reifying relationships between the options 

of distinct CAMELEON levels of abstraction (Figure 6:    

links).  

 

 

Fig.6. Abstracting-reifying relationships between two design 

options at the TM and AUI levels of abstraction. 

For example, the TM level presented in Figure 5 might be reified 

into several options of an AUI level (Figure 6). In Figure 6, a task 

option T1 is reified into a workspace layout “W3” of the AUI 

level. Like the pc  relationship,    relationship 

between levels of abstraction makes sense in a given context of 

use only. For example, Figure 6 depicts a runtime configuration 

where the workspace layout W3 cannot reify the task T2 given the 

current context of use (Figure 6 a). 

The relationships we propose (    and pc ) for 

modeling software can easily be explored automatically. The next 

section investigates automated planning.  

4. UI COMPOSITION BY PLANNING 
This section presents the core principles of planning and shows 

how this approach is valuable for UI composition.   

4.1 Principles of automated planning 
An automated planning algorithm derives a temporal sequence of 

actions into a plan to accomplish a given goal [5]. For example, in 

the previous case study, the sequence {“Call the doctor”→“Find 

route information”} is a plan made of two actions. A Planning 

algorithm pipes syntactic processes to perform symbolic 

computations. Such logical reasoning is formally described by a 

finite-state machine where actions are transitions between 

possible states of the world. Actions are defined by sets of 

pre/post-conditions. Pre-conditions specify the run-time 

dependencies of an action while post-conditions are met after 

executing the action. For example, Victor’s Smartphone should be 

connected (pre-condition) to display a location map (action). 

When this action is executed, the map is eventually displayed 

(post-condition) on the Smartphone. An updated state of the world 

integrates these new post-conditions, therefore enabling further 

actions.  

4.2 Automated planning for UI composition  
A planning solver algorithm computes a transition graph between 

an initial state of the world and a final state corresponding to the 

system/user goal. Currently, such algorithms are mainly applied to 

service composition [10]. However, as illustrated in our case 

study, context-dependent UI composition and automated planning 

strongly relate. Thus, we propose to address UI composition by 

planning where: 

 “Actions” are “User interfaces options”. Existing components 

(e.g., the UI associated to the task “Call the office”) are 

actions for the planner; 

 The “State of the world” is made of the current “Context of 

use” and the “Ergonomic properties” to be satisfied. For 

example, the fact “Victor owns a Smartphone” is a predicate 

of the state of the world; 

 The “selected plan” is the “composed UI”. For example, the 

UI displayed on the Smartphone is a concretization of the plan 

{“Choose the city”→“Choose the doctor” →“Contact the 

doctor”→{“Call the office”→“Find the route information”→ 

“Find the nearest pharmacy”}} computed by the planner. 

Even if several challenges still need to be worked out to bridge the 

gap between automated planning and UI composition, next 

section presents “Compose”, a first framework for rapidly 

prototyping UIs by planning. Its use by end-users belongs to the 

future. 

5. THE COMPOSE FRAMEWORK 
Compose is a proof of concept of UI composition by planning. It 

has been built on top of several functional Java-coded components 

(Figure 7).  

 
Fig. 7. Functional decomposition of Compose. 

The Context of use and quality in use managers translate the 

required ergonomic criteria and the current context of use into 
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predicates. These assertions define the current state of the world. 

For example, the predicate Has(“User”,“Desktop Wall”) is true 

when Victor stands nearby a managed desktop wall. 

The User requirements manager expresses a user need as a goal 

to be met. For example, Victor’s need would be to “Get medical 

support”. 

The Model-based composer and the code composer are the core 

components of Compose. The model-based composer handles the 

planning process, whilst the code composer translates a resulting 

plan into a FUI. In the current prototype, planning is applied to the 

task level only. Once the TM level is composed, mappings are 

made with a generic purpose graphic toolkit called COMET [3]. 

COMETs are reusable context-aware widgets defined at the task 

level and reified along the CAMELEON reference framework. 

The next sections focuses on the core components of Compose. 

5.1 Model-based composer 
The model based composer takes actions as inputs and structures 

them into a plan. This planning process is twofold: at first, the 

user task modeling is composed by collating predefined subtasks 

(Figure 8(p1)); next, each task (i.e.: the planner actions) is 

mapped onto a UI (Figure 8(p2)). These selections bring out a 

composed UI (i.e., the selected plan) whose properties match the 

current state of the world. The resulting plan is a semantic 

description of the UI to be composed. 

 

Fig. 8. Compose planner instantiation. 

In Victors’ case study, Compose waits for a user need 

specification (i.e. “Get medical support”). The composer tries to 

find a corresponding TM level entry point. The option “Get 

Medical Support” is selected. The planning algorithm then 

explores the semantic network of pc  relationships between 

the task options of the TM level (Figure 9). For each uncovered 

task option, Compose checks whether it is possible or not to map 

the task onto a COMET and render the UI. These mappings are 

derived according to the current state of the world. For example, 

leaf task options like “Choose the city” or “Choose the doctor” 

might be mapped onto a UI as soon as Victor’s platform is 

available whatever the characteristics of the platform are (in 

Figure 9: t1 & t2). Other task options like “Call the office” rely on 

carrier capabilities at the platform level (in Figure 9: t3). 

“Contacting the doctor” option distinguishes between several 

screen sizes and resolutions (Figure 9: t4 & t5). When a large 

screen is available, such a sub-task option involves tree leaf 

options (Figure 9: u1), while on a Smartphone display, solely two 

of them are displayed (Figure 9: u2). 

Once all contextual pre-requisites of a provider option are met, the 

relationships to his consumers turn green and each of them might 

in turn be checked-out. After a provider/consumer relationship 

status has been specified, the state of the world is updated with the 

new facts the providing option concurs to establish. For example, 

when “Choose the city” pre-requisites are met, the composer 

knows for sure that Victor will be able to specify his searching 

location and the fact “The location has been set” is added to the 

state of the world.  

Figure 9 outlines the status of the pc relationship between 

the task options after Compose has explored and checked-out a 

state of the world wherein Victor interacts on a desktop wall 

display.  

 

Fig. 9. Possible TM level planning when a desktop wall is 

available. 

Such contextualized semantic UI model highlights the appropriate 

task factorization in a given context of use. When a green path of 

provider-consumer relationship is established from the provided 

objective to the leafs task options, a task tree has been found to 

achieve the user goal. In such case, the code composer is provided 

with the planned task tree. Subsequent mappings are made 

between tasks and COMETs to derive the final UI. 

5.2 Code composer 
The Code composer derives the UI code from the graph of models 

at the task level. At design time, the options of the task level have 

been statically associated to COMETS. Therefore, in Compose, 

each action of the plan is reified by a contextualized COMET. For 

example, the option “Get medical support” is mapped to a 

COMET laying out a sequence of frames on the desktop wall. The 

Code Composer brings these pieces of UI together in a unified 

layout. For instance, the desktop wall task tree provided by the 

model-based composed is mapped to the COMET presented in 

Figure 10. For example, the action “Get medical assistance” is 

mapped to a “COMET C7” laying out a sequence of frames on the 

desktop wall. These frames contain several sub-COMETs 

(“COMET {C3, C1, C4}”) to map the task options “Choose the 

city”, “Choose the doctor” and “Contact the doctor”. In turn, the 

mapping “COMET C4”, that reifies the task “Contact the doctor”, 

contains several vertically aligned sub-COMETs. These sub-

COMETs (“COMET {C2, C5, C6}”) are mapped in the same 

way. 
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Fig. 10. The “Desktop Wall” planned task tree. Each task is 

reified by a pre-defined COMET.  

6. CONCLUSION AND FUTURE WORK 
This article outlines a work in progress to support opportunistic 

user needs. A UI is composed by selecting a path in a graph of 

models according to the current context of use and the ergonomic 

properties to be satisfied. UI composition is seen as a planning 

problem. So far, the focus has been set on the model-based 

composer whatever the time is: design time for the designer thus 

providing a rapid prototyping tool, or runtime for the end-user as 

an intelligent assistant.  

Future works include improvements of planners to fully support 

UI composition. This means (1) generating trees (i.e., tasks 

structures) instead of sequences, (2) defining appropriate 

functional and implementational software architectures for 

general-purpose ubiquitous computing, (3) taking non functional 

properties into account (i.e., returning the best plan instead of the 

first one). Thus, beyond perspectives in HCI, this work has 

challenged planning for ubiquitous computing.  
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