
Automated planning for User Interface Composition
Yoann Gabillon Mathieu Petit Gaëlle Calvary Humbert Fiorino

University of Grenoble, CNRS, LIG
385, avenue de la Bibliothèque, 38400, Saint-Martin d’Hères, France

{yoann.gabillon, mathieu.petit, gaelle.calvary, humbert.fiorino}@imag.fr

ABSTRACT

In ubiquitous computing, both the context of use and the users’

needs may change dynamically with users’ mobility and with the

availability of interaction resources. In such changing

environment, an interactive system must be dynamically

composable according to the user need and to the current context

of use. This article elicits the degrees of freedom User Interfaces

(UI) composition faces to, and investigates automated planning to

compose UIs without relying on a predefined task model. The

composition process considers a set of ergonomic criterions, the

current context of use, and the user need as inputs of a planning

problem. The user need is specified by the end-user (e.g., get

medical assistance). The system composes a UI in turn by

assembling fragments of models along a planning process.

Categories and Subject Descriptors

H.5.2 [User Interfaces]: Ergonomics, Graphical user interfaces

(GUI), Prototyping, User-centered design. D2.2 [Software

Engineering]: Design Tools and Techniques, User-Interfaces.

General Terms

Design, Human factors, Algorithms.

Keywords

User Interfaces composition, Semantic models, Automated task

planning, Context of use.

1. INTRODUCTION
Pushed forward by new information technologies, Weiser’s vision

of ubiquitous computing comes to reality [11]. His definition of

ambient computing implies 1) a global knowledge of an

information system context, and 2) adaptation processes to

comply with a given context of use. The context of use is usually

defined as a <user, platform, environment> triplet. Unpredictable

contexts of use might affect users’ interactive behaviors and task

organization. Therefore, each User Interface (UI) design option

from the task model to the final UI is highly contextual and might

be decided at runtime. Therefore, most of the ubiquitous design

frameworks consider variations of the context of use as inputs to

select UI options (i.e., plastic design [9], automatic generation [6],

mashups [1]). However, to the best of our knowledge, the user

task variation is usually left out.

This article outlines an approach, based on automated planning, to

support task as well as UI variations in an integrated framework

for UI composition. In the following, section 2 exemplifies multi-

level UI composition on a medical support case study. Section 3

elicits the degrees of freedom UI composition faces to. Section 4

introduces automated planning and highlights the UI composition

process. Section 5 presents an integrative framework for UI

composition by planning. The focus is set on the composition of

models (Model-based composer) and code (Code composer).

Section 6 summarizes our contributions and draws some

perspectives.

2. RUNNING CASE STUDY
Victor is a New-York citizen on vacation in Philadelphia. After

spending his day tasting the rich local food, Victor feels bloated at

night and needs to find the doctor on duty. Using his PDA, he

specifies his need in general terms: “I would like to get medical

support”.

According to Victor’s need and to the available interaction

resources and existing information, the system abstracts the goal,

plans a task model, and composes one possible UI. The

composition process is not fully autonomous: it requires

additional information from Victor. The negotiation UIs (Figure

1) are composed by the system as well.

Given Victor’s current location, the system asks Victor whether

he prefers to return home or to find assistance in Philadelphia

(Figure 1a). Victor chooses to consult a local doctor. The system

therefore finds and provides him with possible local contact

information: the nearest hospital or doctor on duty, a medical hot-

line, or the firemen (Figure 1b).

(a) Possible locations.
(b) Possible options.

Fig. 1. Automatically composed UI.

Victor selects the doctor on duty. The systems provides him with

contact and location information. The UI layout matches the

current user platform:

Smartphone. If Victor prefers to keep information at hand, a UI

is generated for his Smartphone. With respect to the limited

screen resolution, pieces of information are tabbed and no

additional data is provided (Figure 2).

Copyright is held by the author/owner(s)
SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

Fig. 2. The generated UIs for a Smartphone.

Desktop Wall. If a desktop wall is available, the system generates

a single pane UI allowing to contact and/or to get route

information to the doctor’s office. Additional information about

close services, like the nearest all-night chemist, is also provided

(Figure 3).

 Fig. 3. The UI generated for a desktop wall display.

3. MODELS ARE KEY
This section goes back to model based design in Human

Computer Interaction (HCI), and claims for keeping these models

at runtime so that to support dynamic adaptation.

3.1 Model based design
UIs are modeled along several levels of abstraction. For example,

the CAMELEON reference framework identifies four main levels

of design decisions [2]. The task model (TM) describes how a

given user task can be carried out; the abstract UI (AUI)

delineates task-grouping structures (i.e., workspaces); the

concrete UI (CUI) selects and layouts the interaction elements

(i.e., interactors) into the workspaces; at last, the final UI (FUI) is

about the code. Mappings relate these models to each other. For

example, a task should be mapped to one workspace of the AUI at

least.

In a dynamic context of use, any of these UI design decisions and

their subsequent models and mappings might be updated at

runtime to match the current context of use. As long as these

adaptations satisfy the usability and utility properties, the UI is

said to be plastic [9]. In Victor's case study, every design decision

might be adapted in a plastic way. For example, the task “Find

nearest chemist” may be removed from the task model. The AUI

model associated to the Smartphone favors the “Call the office”

subtask whilst the desktop wall version gives a simultaneous

access to the two subtasks (“Call the office” and “Find route

information”). Variations at the CUI level are not exemplified in

the case study. We could imagine a switch from a route display to

a list of directions so that to fit with the Smartphone display. Such

adaptations might be seen as a transformation between two graphs

of models.

3.2 Graph of models to support adaptation
Earlier work defined principles for UI plasticity [8]. The authors

structured the CAMELEON reference framework as a network of

models and mappings (Figure 4), and claimed for keeping this

graph alive at runtime so that to support adaptation.

Fig. 4. Semantic graph of models of an interactive system [8].

The graph expresses and maintains multiple perspectives on a

system. For example, a UI may include a task model, a concept

model, an AUI model and a CUI model linked by mappings. In

turn, the UI components are mapped onto items of the Functional

Core, whereas the CUI interactors are mapped onto the input and

output (I/O) devices of the platform. Although such a model

provides a helpful organizational view on the elements and

relationships involved when designing a plastic interactive

software, the proposed mappings between the context of use and

the other components hardly describe contextual choices inside

each model (TM, CUI, AUI, etc.).

Demeure et.al. provide a complementary semantic graph of

models to control UI plasticity within each design option level [4].

Their model allows UI designers to check out replaceable (i.e.

functionally equivalent) units at run-time. For example, a given

layout of interactors at the CUI level might be switched to another

one depending on the desired ergonomic properties [7]. We

propose to replace these hand-made choices by predicates

dependent of the context of use, and manipulated by the system.

Figure 5 illustrates the design process along the models and

mappings proposed in [8] and the replaceable options described in

[4]. For example, at the task level (TM), two options exist for T2

depending on the context of use (Figure 5 b&c).

In Figure 5, within a level of abstraction, units relate to each other

according to a consumer-provider relationship (Figure 5: pc

link). For example, at the TM level, one of the options for the task

T2 relies on the occurrence of a provider leaf option1 for the task

T3 (Figure 5a). Therefore, as T2 “consumes” T3, this option will

be triggered if and only if T3 is satisfied. Depending on the

current context of use, consumer-provider links behave like

2A leaf option has no relationship for neither providing nor

reifying options.

Copyright is held by the author/owner(s)
SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

“opened” or “closed” transistors. In a given pc relationship,

the status of a transistor depends on the contextual requirements

of the provider (p). For example, at the TM level in Figure 5, one

of the task T2 options is possible only for experienced users

(Figure 5d).

Fig. 5. Example of a TM options graph.

In UI design, mappings link together options of different levels of

abstraction. For example, interactors from the CUI level are

usually mapped onto workspaces of the AUI level. These

mappings, presented in Figure 4, or the definitional links in [4]

constitute abstracting-reifying relationships between the options

of distinct CAMELEON levels of abstraction (Figure 6:  

links).

Fig.6. Abstracting-reifying relationships between two design

options at the TM and AUI levels of abstraction.

For example, the TM level presented in Figure 5 might be reified

into several options of an AUI level (Figure 6). In Figure 6, a task

option T1 is reified into a workspace layout “W3” of the AUI

level. Like the pc relationship,   relationship

between levels of abstraction makes sense in a given context of

use only. For example, Figure 6 depicts a runtime configuration

where the workspace layout W3 cannot reify the task T2 given the

current context of use (Figure 6 a).

The relationships we propose (  and pc) for

modeling software can easily be explored automatically. The next

section investigates automated planning.

4. UI COMPOSITION BY PLANNING
This section presents the core principles of planning and shows

how this approach is valuable for UI composition.

4.1 Principles of automated planning
An automated planning algorithm derives a temporal sequence of

actions into a plan to accomplish a given goal [5]. For example, in

the previous case study, the sequence {“Call the doctor”→“Find

route information”} is a plan made of two actions. A Planning

algorithm pipes syntactic processes to perform symbolic

computations. Such logical reasoning is formally described by a

finite-state machine where actions are transitions between

possible states of the world. Actions are defined by sets of

pre/post-conditions. Pre-conditions specify the run-time

dependencies of an action while post-conditions are met after

executing the action. For example, Victor’s Smartphone should be

connected (pre-condition) to display a location map (action).

When this action is executed, the map is eventually displayed

(post-condition) on the Smartphone. An updated state of the world

integrates these new post-conditions, therefore enabling further

actions.

4.2 Automated planning for UI composition
A planning solver algorithm computes a transition graph between

an initial state of the world and a final state corresponding to the

system/user goal. Currently, such algorithms are mainly applied to

service composition [10]. However, as illustrated in our case

study, context-dependent UI composition and automated planning

strongly relate. Thus, we propose to address UI composition by

planning where:

 “Actions” are “User interfaces options”. Existing components

(e.g., the UI associated to the task “Call the office”) are

actions for the planner;

 The “State of the world” is made of the current “Context of

use” and the “Ergonomic properties” to be satisfied. For

example, the fact “Victor owns a Smartphone” is a predicate

of the state of the world;

 The “selected plan” is the “composed UI”. For example, the

UI displayed on the Smartphone is a concretization of the plan

{“Choose the city”→“Choose the doctor” →“Contact the

doctor”→{“Call the office”→“Find the route information”→

“Find the nearest pharmacy”}} computed by the planner.

Even if several challenges still need to be worked out to bridge the

gap between automated planning and UI composition, next

section presents “Compose”, a first framework for rapidly

prototyping UIs by planning. Its use by end-users belongs to the

future.

5. THE COMPOSE FRAMEWORK
Compose is a proof of concept of UI composition by planning. It

has been built on top of several functional Java-coded components

(Figure 7).

Fig. 7. Functional decomposition of Compose.

The Context of use and quality in use managers translate the

required ergonomic criteria and the current context of use into

Copyright is held by the author/owner(s)
SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

predicates. These assertions define the current state of the world.

For example, the predicate Has(“User”,“Desktop Wall”) is true

when Victor stands nearby a managed desktop wall.

The User requirements manager expresses a user need as a goal

to be met. For example, Victor’s need would be to “Get medical

support”.

The Model-based composer and the code composer are the core

components of Compose. The model-based composer handles the

planning process, whilst the code composer translates a resulting

plan into a FUI. In the current prototype, planning is applied to the

task level only. Once the TM level is composed, mappings are

made with a generic purpose graphic toolkit called COMET [3].

COMETs are reusable context-aware widgets defined at the task

level and reified along the CAMELEON reference framework.

The next sections focuses on the core components of Compose.

5.1 Model-based composer
The model based composer takes actions as inputs and structures

them into a plan. This planning process is twofold: at first, the

user task modeling is composed by collating predefined subtasks

(Figure 8(p1)); next, each task (i.e.: the planner actions) is

mapped onto a UI (Figure 8(p2)). These selections bring out a

composed UI (i.e., the selected plan) whose properties match the

current state of the world. The resulting plan is a semantic

description of the UI to be composed.

Fig. 8. Compose planner instantiation.

In Victors’ case study, Compose waits for a user need

specification (i.e. “Get medical support”). The composer tries to

find a corresponding TM level entry point. The option “Get

Medical Support” is selected. The planning algorithm then

explores the semantic network of pc relationships between

the task options of the TM level (Figure 9). For each uncovered

task option, Compose checks whether it is possible or not to map

the task onto a COMET and render the UI. These mappings are

derived according to the current state of the world. For example,

leaf task options like “Choose the city” or “Choose the doctor”

might be mapped onto a UI as soon as Victor’s platform is

available whatever the characteristics of the platform are (in

Figure 9: t1 & t2). Other task options like “Call the office” rely on

carrier capabilities at the platform level (in Figure 9: t3).

“Contacting the doctor” option distinguishes between several

screen sizes and resolutions (Figure 9: t4 & t5). When a large

screen is available, such a sub-task option involves tree leaf

options (Figure 9: u1), while on a Smartphone display, solely two

of them are displayed (Figure 9: u2).

Once all contextual pre-requisites of a provider option are met, the

relationships to his consumers turn green and each of them might

in turn be checked-out. After a provider/consumer relationship

status has been specified, the state of the world is updated with the

new facts the providing option concurs to establish. For example,

when “Choose the city” pre-requisites are met, the composer

knows for sure that Victor will be able to specify his searching

location and the fact “The location has been set” is added to the

state of the world.

Figure 9 outlines the status of the pc relationship between

the task options after Compose has explored and checked-out a

state of the world wherein Victor interacts on a desktop wall

display.

Fig. 9. Possible TM level planning when a desktop wall is

available.

Such contextualized semantic UI model highlights the appropriate

task factorization in a given context of use. When a green path of

provider-consumer relationship is established from the provided

objective to the leafs task options, a task tree has been found to

achieve the user goal. In such case, the code composer is provided

with the planned task tree. Subsequent mappings are made

between tasks and COMETs to derive the final UI.

5.2 Code composer
The Code composer derives the UI code from the graph of models

at the task level. At design time, the options of the task level have

been statically associated to COMETS. Therefore, in Compose,

each action of the plan is reified by a contextualized COMET. For

example, the option “Get medical support” is mapped to a

COMET laying out a sequence of frames on the desktop wall. The

Code Composer brings these pieces of UI together in a unified

layout. For instance, the desktop wall task tree provided by the

model-based composed is mapped to the COMET presented in

Figure 10. For example, the action “Get medical assistance” is

mapped to a “COMET C7” laying out a sequence of frames on the

desktop wall. These frames contain several sub-COMETs

(“COMET {C3, C1, C4}”) to map the task options “Choose the

city”, “Choose the doctor” and “Contact the doctor”. In turn, the

mapping “COMET C4”, that reifies the task “Contact the doctor”,

contains several vertically aligned sub-COMETs. These sub-

COMETs (“COMET {C2, C5, C6}”) are mapped in the same

way.

Copyright is held by the author/owner(s)
SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

Fig. 10. The “Desktop Wall” planned task tree. Each task is

reified by a pre-defined COMET.

6. CONCLUSION AND FUTURE WORK
This article outlines a work in progress to support opportunistic

user needs. A UI is composed by selecting a path in a graph of

models according to the current context of use and the ergonomic

properties to be satisfied. UI composition is seen as a planning

problem. So far, the focus has been set on the model-based

composer whatever the time is: design time for the designer thus

providing a rapid prototyping tool, or runtime for the end-user as

an intelligent assistant.

Future works include improvements of planners to fully support

UI composition. This means (1) generating trees (i.e., tasks

structures) instead of sequences, (2) defining appropriate

functional and implementational software architectures for

general-purpose ubiquitous computing, (3) taking non functional

properties into account (i.e., returning the best plan instead of the

first one). Thus, beyond perspectives in HCI, this work has

challenged planning for ubiquitous computing.

7. ACKNOWLEDGMENTS
This work has been mainly founded by the “Informatique, Signal,

Logiciel Embarqué” research cluster of the Rhône-Alpes region. It

has also been supported by the french “ANR MyCitizSpace” and

the european ITEA2 UsiXML projects.

8. REFERENCES
[1] Brodt, A., Nicklas, D., Sathish, S., and Mitschang, B. 2008.

Context-aware mashups for mobile devices. In WISE 2008:

Web Information Systems Engineering. Springer-Verlag,

280-291.

[2] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,

Bouillon, L., and Vanderdonckt, J. 2003. A unifying

reference framework for multi-target user interfaces.

Interacting with Comp. 15, 3, 289-308.

[3] Demeure, A., Calvary, G., and Coninx. 2008. K. COMET(s),

A Software Architecture Style and an Interactors Toolkit for

Plastic User Interfaces. In 15th Int. Work. on Interactive

Systems Design, Specification, and Verification. Springer-

Verlag, 2008, 225-237.

[4] Demeure, A., Calvary, G., Coutaz, J. and Vanderdonckt, J.

2006. The COMETS Inspector: towards run time plasticity

control based on a semantic network. In Proceedings of the

5th Int. Workshop on Task Models and Diagrams for User

Interface Design: TAMODIA'06, Springer LNCS 4385,

Haselt, Belgium, 324-339.

[5] Nau, D., Ghallab, M., and Traverso. P. 2004. Automated

Planning: Theory & Practice. Morgan Kaufmann Publishers

Inc. San Francisco, CA, USA.

[6] Paternò, F., Mancini, C., and Meniconi, S. 1997.

ConcurTaskTrees: A Diagrammatic Notation for Specifying

Task Models. Proceedings of the IFIP TC13 Interantional

Conference on Human-Computer Interaction, Chapman &

Hall, Ltd., 362-369.

[7] Scapin, D.L. and Bastien, J.M.C. 1997. Ergonomic criteria

for evaluating the ergonomic quality of interactive systems.

Behaviour & Information Technology. Colchester,

ROYAUME-UNI: Taylor & Franci 16, 4 (1997), 220-231.

[8] Sottet, J-S., Ganneau, V., Calvary, G., Coutaz, J., Demeure,

A., Favre, J-M. and Demumieux, 2007. R. Model-driven

adaptation for plastic user interfaces. In Proc. of the 11th

IFIP TC.13 Int. Conf. on Human-Computer Interaction :

INTERACT'07, Springer LNCS 4662, Rio de Janeiro, Brazil,

397-410.

[9] Thevenin, D. and Coutaz, J. 1999. Plasticity of user

interfaces: Framework and research agenda. Human-

computer Interaction, INTERACT'99: IFIP TC. 13 , 30th

August-3rd September 1999, IOS Press, 110.

[10] Traverso, P. and Pistore, M. 2004. Automated Composition

of Semantic Web Services into Executable Processes.

Proceedings of ISWC, LNCS, 380-394.

[11] Weiser, M. 1991. The computer for the 21st century. Special

Issue on Communications, Computers, and Networks 272, 3,

78-89.

Copyright is held by the author/owner(s)
SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA

